Data Governance and Master Data Management (MDM) are both important components of managing an enterprise's data assets. While they have somewhat different goals and remits, they are complementary and work together to ensure that an organization's data is accurate, consistent, and secure. The close relationship between the two can often lead to confusion over which discipline is responsible for different areas of data management, and sometimes means that the terms are used interchangeably.
Let's start by defining what Data Governance and Master Data Management are:
Data Governance refers to the overall management of an organization's data assets. This is the process of managing the availability, usability, integrity, and security of the data. It involves establishing policies, procedures, and standards for data usage and ensuring that they are followed by everyone who interacts with the data. The primary objective of Data Governance is to ensure that data is properly managed and that it is used in a way that aligns with the organization's goals and objectives.
Some of the key components of Data Governance include:
This is the process of creating and maintaining a single, accurate, and consistent version of data across all systems and applications within an enterprise. It involves identifying the most critical data elements that need to be managed, and then creating a master data record that serves as the authoritative source for those elements. The primary objective of MDM is to ensure that these critical data elements are accurate, complete, and consistent across the enterprise.
Some of the key components of Master Data Management include:
It is fair to say that there are several areas of data management in which both Data Governance and Master Data Management have a role to play. For example, defining data quality standards and policies would most likely fall under the remit of Data Governance, whereas assuring the integrity, consistency, and relevance of individual records is the responsibility of Master Data Management. Similarly, data stewardship also has a foot in each camp. While it is generally Data Governance policies that specify how data should be managed and maintained, it is Master Data Management platforms that provide the tools for data stewards to ensure that these policies are followed.
The main differences between Data Governance and Master Data Management are:
If you want to be able to use your data for value creation, and do so in a compliant and secure way, then the answer is yes.
Data Governance and Master Data Management are complementary disciplines in the sense that they both work towards ensuring the quality and integrity of an organization's data assets. Here are some of the specific ways in which they complement each other:
Data Governance provides the framework for MDM: A robust Data Governance framework provides the foundation for MDM. It establishes the policies, standards, and procedures for data usage that MDM relies on to create and maintain accurate and consistent master data records.
Improved data quality: |
Regulatory compliance: |
Better decision-making: |
Cost savings: |
Data Governance and Master Data Management are complementary yet independent disciplines of data management. Both have distinct areas of responsibility and roles to play within a data estate, and in practical terms, there is little overlap between the two. While Data Governance provides the overall framework within which Master Data Management operates, one doesn’t necessarily have to come before the other and either can work autonomously.
However, as with most technology fields, the real value comes from having a set of tightly integrated tools and systems that work together to deliver greater value than the sum of their individual parts. That is certainly the case with Data Governance and Master Data Management. Organizations are demanding more from their data than ever before – they want more insights, more intelligence, and as a result, more opportunities to grow the business. Meeting that need means that you can’t afford to waste valuable time and money wrangling with data that is of poor quality and difficult to access. In combination, Data Governance and Master Data Management can provide a reliable, trusted pipeline of data that is ready to deliver insight across the business, and that is what most organizations today need to succeed.
By Natasha Scott
Head of Demand Generation at CluedIn